Cafeaua – informatii nutritionale

shutterstock_528810559

Profilul nutrițional al cafelei

Această secțiune oferă informații cu privire la profilul nutrițional al cafelei pentru o ceașcă de cafea neagră. În acest articol, este discutat profilul nutrițional al unei porții de cafea de 100ml de tărie medie, fără adaosuri și cu cafeină. Cu toate acestea, adăugarea laptelui, smântânii, zahărului și a altor îndulcitori vor afecta profilul nutrițional final al unei cești de cafea.

Informații nutriționale

Cafeaua neagră conține cantități insignifiante de micronutrienți, grăsimi, carbohidrați și proteine și prin urmare conține doar 1-2 kcal per 100ml32.

Însă, profilul nutrițional final al cafelei va fi afectat de o serie de factori:

  •  Adăugarea laptelui, frișcăi, zahărului sau a altor îndulcitori va afecta valoarea nutrițională finală și poate conduce la un conținut caloric mai mare.
  • Variațiile în ceea ce privește dimensiunea ceștii utilizată la nivelul Europei poate, de asemenea, modifica valoarea nutrițională.

Cafeaua neagră conține un număr de micronutrienți, mai exact potasiu, magneziu și niacin. Nivelul de sodiu este foarte scăzut. Datele de mai jos prezintă profilul nutrițional dat de micronutrienți pentru o ceașcă de cafea de 100 ml de tărie medie, fără adaosuri 32.

tabel-nutritional

Tipul de apă utilizată la preparare (ex. apă dură sau cu grad scăzut de duritate) pot influența conținutul de micronutrienți al unei cești de cafea neagră, în special în relația cu nivelurile de calciu și magneziu. Ușoare variații în ceea ce privește compoziția pot apărea din cauza originii, condițiilor de cultivare, compoziției amestecului și procesării cafelei.

Referente:

  1. ISIC, ‘Coffee as part of a healthy diet and lifestyle’. Available at: http://coffeeandhealth.org/wp-content/uploads/2016/03/Roundtable-report_Coffee-as-part-of-a-healthy-diet.pdf
  2. de Mejia E.G and Ramirez-Mares M.V (2014) Impact of caffeine and coffee on our health. Trends Endocrinol Metab, 25(10):489-92.
  3. Noguchi K. et al (2015) Effect of caffeine contained in a cup of coffee on microvascular function in healthy subjects. J Pharmacol Sci, 127(2):217-22.
  4. EFSA (2015) Scientific Opinion on the Safety of Caffeine. EFSA Journal, 13(5):4102.
  5. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) (2011) Scientific Opinion on the substantiation of health claims related to caffeine and increased fat oxidation leading to a reduction in body fat mass (ID 735, 1484), increased energy expenditure leading to a reduction in body weight (ID 1487), increased alertness (ID 736, 1101, 1187, 1485, 1491, 2063, 2103) and increased attention (ID 736, 1485, 1491, 2375) pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA Journal, 9(4):2054.
  6. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) (2011) Scientific Opinion on the substantiation of health claims related to caffeine and increase in physical performance during short-term high-intensity exercise (ID 737, 1486, 1489), increase in endurance performance (ID 737, 1486), increase in endurance capacity (ID 1488) and reduction in the rated perceived exertion/effort during exercise (ID 1488, 1490) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal, 9(4):2053.
  7. Porkka-Heiskanen T. (2011) Methylxanthines and sleep. Handb Exp Pharmacol, 200:331-48.
  8. Clifford M. (1999) Chlorogenic acids and other cinnamates – nature, occurrence, and dietary burden. J Sci Food Agric, 79:363-372.
  9. Adrian J. and Frangne R. (1991) Synthesis and availability of niacin in roasted coffee. Adv Exp Med Biol, 289:49-59.
  10. Stennert A. and Maier H.G. (1994) Trigonelline in coffee. II. Content of green, roasted and instant coffee. Z Lebensm Unters Forsch, 199(3):198-200.
  11. Stadler R.H. (2002) Alkylpyridiniums. 1. Formation in model systems via thermal degradation of trigonelline. J Agric Fd Chem, 50:1192-1199.
  12. Esposito F. et al. (2003) Moderate Coffee consumption increases plasma glutathione but not homocysteine in healthy subjects. Aliment Pharmacol and Therapeut, 17:595-601.
  13. Natella F. et al. (2002) Coffee drinking influences plasma antioxidant capacity in humans.J. Agric. Food Chem, 50:6211-6216.
  14. Moura-Nunes N. et al. (2009) The increase in human plasma antioxidant capacity after acute coffee intake is not associated with endogenous non-enzymatic antioxidant compounds. Int. J. Food Sci. Nutr, 60:173-181.
  15. Misik M. et al. (2010) Impact of paper filtered coffee on oxidative DNA-damage: Results of a clinical trial. Mutation Res, 692(1-2):42-8.
  16. Hoelzl C. et al. (2010) Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Fd Res, 54(12):1722-33.
  17. Urgert R. & Katan M.B. (1996) The cholesterol-raising factor from coffee beans. J R Med, 89(11): 618-623.
  18. Jee S.H. et al. (2001) Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol, 153:353-362.
  19. Butt M.S. & Sultan M.T. (2011) Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr, 51:363-373.
  20. Jorgensen K. (2006) Occurrence of ochratoxin A in commodities and processed food – A review of EU occurrence data. Food Addit Contam, 2005;22 Suppl 1:26-30.
  21. European Commission (2006) ‘Regulation setting maximum levels for certain contaminants in foodstuffs No 1881/2006’. Available at: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1881-20140701&from=EN
  22. EFSA (2015) Scientific Opinion on Acrylamide in Food. EFSA Journal, 13(6):4104.
  23. Lipworth L. et al. (2012) Review of epidemiologic studies of dietary acrylamide intake and risk of cancer. Eur J Cancer Prev, 21(4):375-86.
  24. Loomis D et al. (2016) Carcinogenicity of drinking coffee, mate and very hot beverages. Lancet Oncol, 17(7):877-878.
  25. European Commission, ‘Acrylamide’. Available at: https://ec.europa.eu/food/safety/chemical_safety/contaminants/catalogue/acrylamide_en
  26. Altaki M.S. et al. (2012) Occurrence of furan in coffee from Spanish Market: contribution of brewing and roasting. Fd Chem, 126(4):1527–153.
  27. Guenther H. et al. (2010) Furan in coffee: pilot studies on formation during roasting and losses during production steps and consumer handling. Food Addit Contam, 27:283-290.
  28. Chaichi M. et al. (2015) Furanic compounds and furfural in different coffee products by headspace liquid-phase micro-extraction followed by gas chromatography-mass spectrometry: survey and effect of brewing procedures. Food Addit Contam, B8:73-80.
  29. Moro S. et al. (2012) Furan in heat-treated foods: formation, exposure, toxicity, and aspects of risk assessment. Mol Nutr Food Res, 56(8):1197-211.
  30. EFSA (2011) Update on furan levels in food from monitoring years 2004-2010 and exposure assessment. EFSA Journal, 9(9):2347.
  31. Joint FAO/WHO (2011) Food Standards Programme Codex Committee on Contaminants in Food, Discussion Paper on Furan, CX/CF 11/5/13.
  32. Food Standard Agency, Public Health England, McCance and Widdowson’s The Composition of Foods, 7th edn., Cambridge, Royal Society of Chemistry, 2014.
  33. Popkin B.M. et al. (2006) A new proposed guidance system for beverage consumption in the United States. AJCN, 83:529-542.
  34. Silva A.M. et al. (2013) Total body water and its compartments are not affected by ingesting a moderate dose of caffeine in healthy young adult males. Appl. Physiol. Nutr. Metab, 38:6.
  35. Kolasa K.M. et al. (2009) Hydration and health promotion. Nutr Today, 44:190-203.
RETETE